133 research outputs found

    Invertible Orientation Scores of 3D Images

    Full text link
    The enhancement and detection of elongated structures in noisy image data is relevant for many biomedical applications. To handle complex crossing structures in 2D images, 2D orientation scores were introduced, which already showed their use in a variety of applications. Here we extend this work to 3D orientation scores. First, we construct the orientation score from a given dataset, which is achieved by an invertible coherent state type of transform. For this transformation we introduce 3D versions of the 2D cake-wavelets, which are complex wavelets that can simultaneously detect oriented structures and oriented edges. For efficient implementation of the different steps in the wavelet creation we use a spherical harmonic transform. Finally, we show some first results of practical applications of 3D orientation scores.Comment: ssvm 2015 published version in LNCS contains a mistake (a switch notation spherical angles) that is corrected in this arxiv versio

    Left-invariant Stochastic Evolution Equations on SE(2) and its Applications to Contour Enhancement and Contour Completion via Invertible Orientation Scores

    Get PDF
    We provide the explicit solutions of linear, left-invariant, (convection)-diffusion equations and the corresponding resolvent equations on the 2D-Euclidean motion group SE(2). These diffusion equations are forward Kolmogorov equations for stochastic processes for contour enhancement and completion. The solutions are group-convolutions with the corresponding Green's function, which we derive in explicit form. We mainly focus on the Kolmogorov equations for contour enhancement processes which, in contrast to the Kolmogorov equations for contour completion, do not include convection. The Green's functions of these left-invariant partial differential equations coincide with the heat-kernels on SE(2), which we explicitly derive. Then we compute completion distributions on SE(2) which are the product of a forward and a backward resolvent evolved from resp. source and sink distribution on SE(2). On the one hand, the modes of Mumford's direction process for contour completion coincide with elastica curves minimizing ∫κ2+ϵds\int \kappa^{2} + \epsilon ds, related to zero-crossings of 2 left-invariant derivatives of the completion distribution. On the other hand, the completion measure for the contour enhancement concentrates on geodesics minimizing ∫κ2+ϵds\int \sqrt{\kappa^{2} + \epsilon} ds. This motivates a comparison between geodesics and elastica, which are quite similar. However, we derive more practical analytic solutions for the geodesics. The theory is motivated by medical image analysis applications where enhancement of elongated structures in noisy images is required. We use left-invariant (non)-linear evolution processes for automated contour enhancement on invertible orientation scores, obtained from an image by means of a special type of unitary wavelet transform

    A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2)

    Get PDF
    We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2)=R2⋊S1SE(2) = \mathbb{R}^2 \rtimes S^1 with a metric tensor depending on a smooth external cost C:SE(2)→[δ,1]\mathcal{C}:SE(2) \to [\delta,1], δ>0\delta>0, computed from image data. The method consists of a first step where a SR-distance map is computed as a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) system derived via Pontryagin's Maximum Principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. For C=1\mathcal{C}=1 we show that our method produces the global minimizers. Comparison with exact solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell points and cusp points, which we again verify for the uniform cost case C=1\mathcal{C}=1. Regarding image analysis applications, tracking of elongated structures in retinal and synthetic images show that our line tracking generically deals with crossings. We show the benefits of including the sub-Riemannian geometry.Comment: Extended version of SSVM 2015 conference article "Data-driven Sub-Riemannian Geodesics in SE(2)

    Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging

    Full text link
    Left-invariant PDE-evolutions on the roto-translation group SE(2)SE(2) (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough study and comparison of the many numerical approaches, which, remarkably, is missing in the literature. Existing numerical approaches can be classified into 3 categories: Finite difference methods, Fourier based methods (equivalent to SE(2)SE(2)-Fourier methods), and stochastic methods (Monte Carlo simulations). There are also 3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here we provide an overview of these 3 types of exact solutions and explain how they relate to each of the 3 numerical approaches. We compute relative errors of all numerical approaches to the exact solutions, and the Fourier based methods show us the best performance with smallest relative errors. We also provide an improvement of Mathematica algorithms for evaluating Mathieu-functions, crucial in implementations of the exact solutions. Furthermore, we include an asymptotical analysis of the singularities within the kernels and we propose a probabilistic extension of underlying stochastic processes that overcomes the singular behavior in the origin of time-integrated kernels. Finally, we show retinal imaging applications of combining left-invariant PDE-evolutions with invertible orientation scores.Comment: A final and corrected version of the manuscript is Published in Numerical Mathematics: Theory, Methods and Applications (NM-TMA), vol. (9), p.1-50, 201

    PDE-based Group Equivariant Convolutional Neural Networks

    Full text link
    We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer's trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in symmetries such as rotation in addition to the standard translation equivariance of CNNs. Having all the desired symmetries included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics of our primary case of interest: roto-translation equivariance. We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers, we release our implementation with this article in the form of the LieTorch extension to PyTorch, available at https://gitlab.com/bsmetsjr/lietorch . Just like for linear convolution a morphological convolution is specified by a kernel that we train in our PDE-G-CNNs. In PDE-G-CNNs we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed by morphological convolutions. We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications with far fewer parameters than traditional CNNs.Comment: 27 pages, 18 figures. v2 changes: - mentioned KerCNNs - added section Generalization of G-CNNs - clarification that the experiments utilized automatic differentiation and SGD. v3 changes: - streamlined theoretical framework - formulation and proof Thm.1 & 2 - expanded experiments. v4 changes: typos in Prop.5 and (20) v5/6 changes: minor revisio

    Total Variation and Mean Curvature PDEs on Rd⋊Sd−1\mathbb{R}^d \rtimes S^{d-1}

    Get PDF
    Total variation regularization and total variation flows (TVF) have been widely applied for image enhancement and denoising. To include a generic preservation of crossing curvilinear structures in TVF we lift images to the homogeneous space M=Rd⋊Sd−1M = \mathbb{R}^d \rtimes S^{d-1} of positions and orientations as a Lie group quotient in SE(d). For d = 2 this is called 'total roto-translation variation' by Chambolle & Pock. We extend this to d = 3, by a PDE-approach with a limiting procedure for which we prove convergence. We also include a Mean Curvature Flow (MCF) in our PDE model on M. This was first proposed for d = 2 by Citti et al. and we extend this to d = 3. Furthermore, for d = 2 we take advantage of locally optimal differential frames in invertible orientation scores (OS). We apply our TVF and MCF in the denoising/enhancement of crossing fiber bundles in DW-MRI. In comparison to data-driven diffusions, we see a better preservation of bundle boundaries and angular sharpness in fiber orientation densities at crossings. We support this by error comparisons on a noisy DW-MRI phantom. We also apply our TVF and MCF in enhancement of crossing elongated structures in 2D images via OS, and compare the results to nonlinear diffusions (CED-OS) via OS.Comment: Submission to the Seventh International Conference on Scale Space and Variational Methods in Computer Vision (SSVM 2019). (v2) Typo correction in lemma 1. (v3) Typo correction last paragraph page

    Analysis of (sub-)Riemannian PDE-G-CNNs

    Get PDF
    Group equivariant convolutional neural networks (G-CNNs) have been successfully applied in geometric deep learning. Typically, G-CNNs have the advantage over CNNs that they do not waste network capacity on training symmetries that should have been hard-coded in the network. The recently introduced framework of PDE-based G-CNNs (PDE-G-CNNs) generalizes G-CNNs. PDE-G-CNNs have the core advantages that they simultaneously (1) reduce network complexity, (2) increase classification performance, and (3) provide geometric interpretability. Their implementations primarily consist of linear and morphological convolutions with kernels. In this paper, we show that the previously suggested approximative morphological kernels do not always accurately approximate the exact kernels accurately. More specifically, depending on the spatial anisotropy of the Riemannian metric, we argue that one must resort to sub-Riemannian approximations. We solve this problem by providing a new approximative kernel that works regardless of the anisotropy. We provide new theorems with better error estimates of the approximative kernels, and prove that they all carry the same reflectional symmetries as the exact ones. We test the effectiveness of multiple approximative kernels within the PDE-G-CNN framework on two datasets, and observe an improvement with the new approximative kernels. We report that the PDE-G-CNNs again allow for a considerable reduction of network complexity while having comparable or better performance than G-CNNs and CNNs on the two datasets. Moreover, PDE-G-CNNs have the advantage of better geometric interpretability over G-CNNs, as the morphological kernels are related to association fields from neurogeometry
    • …
    corecore